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conventional methods of computation, it offers a 
handicap to the use of anisotropic molecules like the 
uranyl ion to exploit the maximum effects at the 
absorption edges for solving the phase problem. Thus 
from a pessimistic point of view it is a setback. We 
adopt the opposite view: where there is a complication 
there is the opportunity of sharper, more penetrating 
methods for extracting information from diffraction 
experiments. There is much to look for in the 
exploration of this new region of diffraction optics. 
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Abstract 

A description is given of the effect on the residual R 2 
caused by a misplacement of a fraction of the atoms in 
a tentative structure model. New expressions are 
derived for the space groups P1 and P1 for moments as 
functions of the threshold a, below which intensity data 
are omitted. It turns out that the range in which R 2 acts 
as a discriminator between correct and incorrect 
models is drastically limited even by low threshold 
values. Theory and experiment are shown to be in 
excellent agreement. 

Introduction 

Automation of a crystal structure analysis requires 
criteria which discriminate between a correct and an 
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incorrect set of atomic positions. If one decides to use 
mathematical functions for this purpose, then residual 
functions are an obvious choice (Lenstra, 1974). In this 
article we will discuss some properties of R 2, which is 
defined as 

Z (E~-- E~ a,2) 2 
H 

RE= , (1) 
E 4 

H 

where E 2 corresponds to the observed normalized 
intensities and E 2 to the normalized intensities related 
to the tentative fragment of the structure; a 2 is given by 

n 2 N 
Z j _ - I  2 • 

Let the structure looked for contain N equal atoms 
and let the tentative structure model contain n atoms 
(n < N), of which g atoms are correctly located and f 
atoms are badly misplaced (g + f = n). This model is 
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denoted by (g, f ) .  We will derive expressions for R 2 in 
the general case ( g , f )  when a threshold a is applied to 
the data, i.e. when all EN 2 < a are eliminated. The results 
will be verified against simulated experiments. 

Previously (Petit, Lenstra & Van Loock, 1981)we 
described the behaviour of R 2 as a function of the 
threshold a for the extreme cases (n,0) and (0,n). It was 
demonstrated that for situations (n,0) the elimination of 
up to 70% of the available data hardly influences the 
expectation value of R 2. At the same time we noted* 
that a(R 2) did not vary much when EN 2 values up to 
a = 2 were discarded. 

Since the time needed to compute experimental 
values of R 2 increases linearly with the number of 
reflections involved, the constancy of R 2 and a(R z) 
made it look surprisingly profitable to omit low- 
intensity reflections in the testing of the reliability of 
tentative structure models. The new expressions for 
R2[a,(g,f)] made it possible to show that the intro- 
duction of a threshold limits the range in which our 
formulation can be applied to find what correct and 
incorrect models are. So a large amount of computing 
time can only be saved if one is willing to give up a 
substantial part of the region in which R z operates as a 
good discriminator function. 

Expressions for R 2 ( a  ) for the general ease (g,f) 

R 2 a s  a function of the threshold a, which will be 
applied to the observed data only, is given by 

4 4 2 2 2 <E~v> a + a,(En> a -- 2crx<ENE,> a 
R2(a) = (2) 

<E4>a 

The angular brackets indicate averages over a large 
number of reflections and the subscript a is linked to the 
threshold value. 

The evaluation of the moments indicated in (2) is 
simple, for a model (g, f),  once the relevant moments 
for (n,0) and (0,n) are known. We will demonstrate this 
for < E~> a. 

The normalized intensity E~ is generally given by 

E~ = -  cos 27rH.rj + sin 27rH.% . (3) 
/7 j = l  j = l  . 

For a subset of atoms we rigorously apply the 
normalization condition, that is we take 

E~ = - cos 27rIt. % + sin 27rtt. % . (4) 
g =l =I 

Consequently we have <E~> = (E~-> = <E2> = 1, 
implying that in the point-atom approximation we use a 
scattering power depending upon the size of the model. 

* A theoretical proof  for the observation has been presented by 
Van Havere & Lenstra (1980). 

In general we can now write 

E~ g 2 f -- - Ee + - -  E} .  (5) 
/7 /7 

Taking the average value of E~, we get 

= -  f 
(E~> g<E~>+--<E}>. (6) 

17 n 

Similarly, we obtain 

= -  f 
(E~E~> g (E~E~> +--(E~>(E}> (7) 

/7 /7 

g2 f2 
(E4> =--~ (E4> + --~ (E4y> 

.g f  
+ n---s--<E~><E}>, (8) 

with a = 4  or 6 for the space groups P1 or PI, 
respectively. Analogous formulae were first derived by 
Parthasarathi & Parthasarathy (1975) for a crystal 
containing a few heavy atoms in the asymmetric unit. 

Application of the threshold to the observed data 
means that (E}> is independent of a. Thus, (6) to (8) 
yield 

= - -  f (E2)a g (E2),~ + - -  (9) 
/7 /7 

<E 2 2 g f E,>a___ (E ~ 2 E~>a+--(E2>a ( 1 0 )  
/7 /7 

g2 f2 agf  <E2 >,, • 
<E4>o = <E4>o <E)> + /7----7- 

(11) 

Realizing that moments containing E I correspond to 
( 0 , f )  and moments containing E~ correspond to (g,0), 
we can now calculate all terms in (9) to (11) with the 
help of the previously (Petit & Lenstra, 1979; Petit, 
Lenstra & Van Loock, 1981) derived moments for the 
extreme cases (see Table 1). It should be noted that a, 2 
of Table 1 should now be taken as g/N, whereas a, 2 in 
(2) always remains n/N. 

The present R 2 description was verified against 
simulated experiments. Some typical values are sum- 
marized in Table 2. 'Experimental '  (R2)  values and 
their spread s (s 2 = (R~) - <R2> 2) were calculated as 
averages over a series of 200 structures. Each single 
structure contained 100 atoms per unit cell, while the 
corresponding data set was confined to 2000 reflec- 
tions. Structures, related (correct) and unrelated (incor- 
rect) models were generated by computer simulations. 

To check that 200 structures are sufficient to give 
stable converged values of (R2)  land of s(R2)] we 
tested the case (30,30) with 700 structures in the 
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Table 1. Relevant moments for P1 and Pi  as functions of  the threshold a for the two extreme situations 
(n,O) and (O,n) 

cr~ is given by n/N and Q = v/~-/ne-O/Z/erfc(v/-d7~,  n and N are supposed to be large. I r f i s  small <E}) is (2f 2 - f ) / P  in P1 and 
(3f 2 - 3f)/f 2 in Pi (Wilson, 1969). 

PI Pi 

Model 
Moments 

<E~>~ 
2 2 (EVE,,),, 

<E.~.),, 
4 <E,.>,, 

(n,0) (0,n) (n,0) (0,n) 

1 + a ~ a  1 1 + o Z Q  1 
a~ a z + 2a~(2- a~)a + 2 2 3 + a~[6 + a~(a - 3)1Q 3 
a]a z+(1 +a~)a+ 1 +a~ 1 + a  1 +2a ]+ [1  +a~(2+a) lQ I +Q 

l + a  I + Q  
a 2 + 2 a + 2  3 + ( 3 + a ) Q  

Table 2. Comparison of  'experimental' (R2)  values with the theoretical ones as a function of  the threshold a for  
non-centrosymmetric and centrosymmetric structures 

Standard deviations of the experimental (R2) values are shown in parentheses. 

Model (50,50) (30,30) (60,0) (0,60) 

a (gz) Rt2 he°r (RE) g~ he°r (gz) R~ he°r (g2) R~ he°r 

Space group PI 
0.0 0.75 (4) 0.748 0.667 (18) 0.668 0.399 (11) 0.400 0.755 (17) 0.757 
1.0 0.49 (2) 0.487 0.595 (17) 0.597 0.378 (11) 0.379 0.661 (13) 0.663 
2.0 0.45 (2) 0.449 0.63 (2) 0.629 0.379 (15) 0.381 0.710 (16) 0.711 
3.0 0.45 (3) 0.452 0.66 (3) 0.662 0.38 (2) 0.385 0.76 (2) 0.760 
4.0 0.46 (5) 0-461 0-68 (4) 0-687 0.39 (4) 0.388 0.80 (3) 0.797 
5.0 0.46 (8) 0.471 0-70 (7) 0.706 0.39 (5) 0-391 0.82 (5) 0.825 

Space group Pi 
0.0 1.00 (6) 0.995 0.84 (2) 0.837 0-482 (17) 0.480 0.96 (2) 0.954 
1.0 0.64 (4) 0.642 0.707 (18) 0.706 0.440 (16) 0.439 0.783 (16) 0.784 
2.0 0.58 (3) 0-582 0.71 (2) 0.708 0.429 (18) 0.429 0.796 (16) 0.796 
3-0 0.56 (4) 0.559 0.72 (3) 0.720 0.42 (2) 0.424 0.819 (17) 0.818 
4.0 0.55 (4) 0.549 0.74 (3) 0.731 0.42 (3) 0.420 0.84 (2) 0.839 
5.0 0.54 (5) 0.545 0.75 (4) 0.741 0.42 (3) 0.418 0.86 (2) 0-856 

averaging procedure.  Compar i son  of  these results with 
those obtained after 200 cycles showed no differences 
larger than 0.001.  F rom this we derive that  200 
structures are sufficient to tabulate the data signifi- 
cantly to the third digit. 

Inspection of  Table 2 shows a striking agreement 
between the theoretical R 2 values and their 'experi- 
mental '  (R2)  counterparts .  It is also evident that  it is 
only in situations (n,0) that  R 2 does not show large 
variat ions in function of  the threshold a. In all other 
cases rather large variat ions occur.  It seems, however, 
overoptimistic to hope that  from an inspection of  the 
path of  R2(a) during an actual structure analysis, one 
would be able to determine the number  of  incorrect  
atoms in a tentative model (e.g. in a M U L T A N  
solution). 

Two more remarks are in order comment ing on how 
realistic the 'experimental '  data  are. Firstly, in the 

present analysis any incorrectly placed atom is com- 
pletely, randomly  misplaced. Sometimes, tentative 
atomic positions are generated (e.g. by MULTAN)  
which exhibit systematic errors, for instance a geometri- 
cally correct  f ragment  at an incorrect  location. In this 
example only the t ranslat ion parameter  is incorrect.  
Thus E n and E n are related in magnitude,  but not in the 
phase angle. The present theory cannot  be applied in 
this case because E n and E n are taken as not 
interrelated when we deal with incorrect  settings. 
Secondly, the perfect agreement between theory and 
computer-simulated experiment is certainly favoured by 
the randomness  of  our test structures. However,  for 
models of  the type (n,0) we also calculated R2(a) using 
actual structures as basic information.  A detailed 
description is given elsewhere (Petit, Lenstra & Van 
Loock, 1981). No contradict ions in the behaviour  of 
R 2(a) were found between those 'actual '  and the present 
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' random' enumerations. Therefore, we believe that our 
present results can be regarded as representative for 
realistic structure data. 

Unfortunately, the present theory does not allow us 
to predict tr (R 2). Nevertheless, an 'experimental' a (R 2) 
can be obtained as sE(R2) = (R 2) - ( R E )  2. Since s(R2) 
is stable to the third digit, i.e. independent of the 
number of the structures in the averaging process, we 
can conclude that s (R2)  should be practically equal to 
tr(R 2), the relevant parameter of the probability density 
function P(R 2). 

Our 'experimental' tT(R2) values do agree with the 
theoretical values obtained by Van Havere & Lenstra 
(1980). 

The dependency of tT(R2) on  a in all cases ( g , f )  still 
holds out hope that low-intensity data can be neglected 
and thus computing time saved, without loss of 
information. In the next section, we will show that the 
price to be paid is a substantial shrinkage of the region 
in which R E operates as a good discriminator function. 

The influence of  the threshold a on the applicability of  
R2 

The heavy-atom technique has been successfully 
automated (Lenstra, 1974; Van de Mieroop, 1979)to 
handle R E as a discriminator function. In this routine 
the model of the structure is enlarged by adding the 
atoms one by one to a starting model. If addition of an 
atom increases R E with respect to the previous model, 
the new atom is regarded as incorrect. This definition of 
an incorrectly located atom is algebraically given by 

R2(g,1) 
> 1 (12) 

R2(g,0 ) - 

for the non-centrosymmetric space group P1 and by 

R2(g,2) 
> 1 (13) 

RE(g,0 ) - 

for space group P[.  Condition (13) simply reflects that 
it is impossible to add one atom to the model without 
the introduction of its symmetry-related atom. 

After substitution of the appropriate values in (2), 
(9), (10) and (11) and after some manipulation, (12) 
can be rewritten as 

4ag 2 + 4Ng  - 2 N  2 a - 2N 2 + N _> 0. (14) 

Similarly, one obtains from (13): 

4Qg 2 + 4 N g - ~ N  2 Q - ~ N  2 + 2N  >_ 0 (15) 

with Q defined as in Table 1. Since g and N are large, it 

Table 3. e(a) values f o r  the space groups P1 and P i  
(a) 

a P1 Pi 

0.0 0.500 0.333 
1.0 0.618 0.484 
2.0 0.651 0.515 
3.0 0.667 0.530 
4.0 0.675 0.539 
5.0 0.681 0.545 
6.0 0.685 0.549 

is assumed implicitly in the previous sections, the 
contributions of the smallest terms (N and 2N) can be 
neglected. Conditions (14) and (15) can then be 
reduced to 

g >_ e(a)N.  (16) 

That is to say that our criterion to reject a newly added 
atom as being badly misplaced will only be a good 
criterion when the number of already correctly located 
atoms g is larger than a certain fraction e(a) of the total 
number of atoms N in the cell. This fraction depends 
upon the space group as well as on the threshold. Some 
values of e(a) are given in Table 3. 

The impact of small threshold values is large, while 
larger thresholds do not lead to a substantial additional 
decrease in the operational validity range of (12) and 
(13). This behaviour of e(a) contrasts in this aspect 
with the behaviour of o(R2) (see also Table 2) near the 
situations (g,0). 
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